What is the angle between <-3,5,6> <3,5,6> and <-1,9,-3><1,9,3>?

2 Answers
Mar 5, 2016

cos theta = (<-3,5,6> * <-1,9,-3>)/((sqrt((-3)^2+5^2+6^2)) sqrt((-1)^2+9^2+(-3)^2))cosθ=<3,5,6><1,9,3>((3)2+52+62)(1)2+92+(3)2
cos theta=((-3)(-1)+(5)(9)+(6)(-3))/((sqrt70)(sqrt91)) =30/sqrt6370 ->theta = cos^-1 (30/sqrt6370) = 67.92^@cosθ=(3)(1)+(5)(9)+(6)(3)(70)(91)=306370θ=cos1(306370)=67.92

Explanation:

Find the dot product of the vectors then divide by the magnitude of each. Finally take the cosine inverse to find thetaθ

Mar 5, 2016

Use the definition of a dot product to find that:

theta=67.1^oθ=67.1o or 1.171.17 radians

Explanation:

The dot product is a very convenient tool that allows you to find the angle between any two vectors. It is given by:

vec a*vec b=|\vec a|*|\vec b|*costhetaab=abcosθ

Where vec a*vec bab represents the dot product between vec aa and vec bb, given by:

vec a*vec b=(a_1*b_1)+(a_2*b_2)+(a_3*b_3)+...

Note: The dot product will always result in a scalar value.

|vec a| and |vec b| are the magnitudes of vec a and vec b, respectively. They are also scalar values, calculated by using:

|vec a| = (a_1^2+a_2^2+a_3^2+...)^(1/2)

With this information, the angle between the vectors <−3,5,6> and <−1,9,−3> can be found:

Step 1: Calculate the dot product
vec a*vec b=(a_1*b_1)+(a_2*b_2)+(a_3*b_3)+...
vec a*vec b=(-3*-1)+(5*9)+(6*-3)
vec a*vec b=3+45+(-18)
vec a*vec b=30

Step 2: Calculate the magnitude of each vector
|vec a| = (a_1^2+a_2^2+a_3^2+...)^(1/2)
|vec a| = ((-3)^2+(5)^2+(6)^2)^(1/2)
|vec a| = (9+25+36)^(1/2)
|vec a| = (70)^(1/2)
|vec a| = 8.367

Following the same procedure for |vec b| gives:
|vec b|=9.220

|vec a|*|vec b| then is: 8.367*9.220=77.143

Step 3: Solve for theta:

vec a*vec b=|\vec a|*|\vec b|*costheta
30=77.143*costheta
costheta=30/77.143
costheta=0.389
theta=cos^-1(0.389)
theta=67.1^o or 1.17 radians