How do you evaluate the integral of int (x-1)/(x^2+3x+2) dxx1x2+3x+2dx from 0 to 1?

2 Answers
Mar 7, 2016

int _0^1 ((x-1)d x)/(x^2+3x+2)=-2,12014923742+C10(x1)dxx2+3x+2=2,12014923742+C

Explanation:

u=x^2+3x+2" "d u=(2x+3)d xu=x2+3x+2 du=(2x+3)dx
x-1=1/2(2x-2+3-3)" "x-1=1/2(2x+3-5)x1=12(2x2+33) x1=12(2x+35)
=1/2int (2x+3-5)/(x^2+3x+2)d x" "=122x+35x2+3x+2dx
=1/2(int( (2x+3)d x)/(x^2+3x+2)-int (5d x)/(x^2+3x+2))=12((2x+3)dxx2+3x+25dxx2+3x+2)
=1/2(int( d u)/u)-5int (d x)/(x^2+3x+2)=12(duu)5dxx2+3x+2
1/(x^2+3x+2)=A/(x+2)+B/(x+1)1x2+3x+2=Ax+2+Bx+1
1=A(x+1)+B(x+2)1=A(x+1)+B(x+2)
x=-1 " "B=1" "x=-2" "A=-1x=1 B=1 x=2 A=1
1/2[l n u-5(-int (d x)/(x+2)+int (d x)/(x+1) )]12[lnu5(dxx+2+dxx+1)]
1/2[l n u-5(l n(x+2)+l n(x+1))]_0^1+C12[lnu5(ln(x+2)+ln(x+1))]10+C
1/2[l n(x^2+3x+2)-5l n(x+2)-5(l n x+1)]_0^1+C12[ln(x2+3x+2)5ln(x+2)5(lnx+1)]10+C
1/2[(l n 7-5l n 3-5l n2)-(l n 2-5l n2-5l n1)]+C12[(ln75ln35ln2)(ln25ln25ln1)]+C
1/2[(l n7-5l n3-5l n2)-(-4l n2-5l n1)]" "l n1=012[(ln75ln35ln2)(4ln25ln1)] ln1=0
1/2[l n7-5l n3-5l n2+4l n2]" "=1/2[l n7-5ln 3-l n2]12[ln75ln35ln2+4ln2] =12[ln75ln3ln2]
int _0^1 ((x-1)d x)/(x^2+3x+2)=-2,12014923742+C10(x1)dxx2+3x+2=2,12014923742+C

Mar 7, 2016

Use partial fractions.

Explanation:

(x-1)/(x^2+3x+2) = (x-1)/((x+2)(x+1))x1x2+3x+2=x1(x+2)(x+1)

A/(x+1)+B/(x+2) = (x-1)/((x+2)(x+1))Ax+1+Bx+2=x1(x+2)(x+1)

A(x+2)+B(x+1)=x-1A(x+2)+B(x+1)=x1

Ax+2A+Bx+B = x-1Ax+2A+Bx+B=x1

(A+B)x + (2A+B) = 1x+(-1)(A+B)x+(2A+B)=1x+(1)

Solve:
{(A+B=1),(2A+B=-1):}

A=-2 and B=3

So
int_0^1 (x-1)/(x^2+3x+2) dx = int_0^1 (-2/(x+1)+3/(x+2) )dx

= -2ln(x+1) + 3 ln(x+2)]_0^1

= [-2ln(2)+3ln(3)]-[-2ln(1)+3ln(2)]

= -5ln(2)+3ln(3)

= ln(27/32)

Rewrite or approximate as you need.