Question #3069c

1 Answer
Mar 14, 2016

#{(x=1),(y=0):}#

Explanation:

If you meaning:

#{(x=1-y, "S1"),(y=2x-2,"S2"):}#

Using the Systems solving method Using Substitution you have already explicitated #x# in #S1#, then you have to substitute it in #S2# as you said:

#{(x=1-y, "S1"),(y=2(1-y)-2,"S2"):}#

Then you solve #S2# in #y#

#{(x=1-y, "S1"),(y=cancel(2)-2ycancel(-2),"S2"):}#

#{(x=1-y),(y+2y=0):}<=>{(x=1-y),(3y=0):}<=>{(x=1-y),(y=0):}#

Now you substitute #y=0# in the equation #S1#

#{(x=1-0, "S1"),(y=0,"S2"):}#

#:.{(x=1),(y=0):}#

In a #XY# plot, the system solution is the point where #S1# intercept #S2#:

graph{(y+x-1)(y-2x+2)=0 [-10, 10, -5, 5]}