How do you find the exact values of cos 2pi/5?

1 Answer
Mar 16, 2016

cos(2π5)=1+54

Explanation:

Here the most elegant solution I found in:

http://math.stackexchange.com/questions/7695/how-to-prove-cos-frac2-pi-5-frac-1-sqrt54

cos(4π5)=cos(2π4π5)=cos(6π5)

So if x=2π5:

cos(2x)=cos(3x)

Replacing the cos(2x) and cos(3x) by their general formulae:

cos(2x)=2cos2x1andcos(3x)=4cos3x3cosx,

we get:

2cos2x1=4cos3x3cosx

Replacing cosx by y:

4y32y23y1=0

(y1)(4y2+2y1)=0

We know that y1, so we have to solve the quadratic part:

y=2±2244(1)24

y=2±208

since y>0, y=cos(2π5)=1+54