How do you differentiate f(x)=sin(2x3) using the chain rule?

1 Answer
Mar 19, 2016

dydx=12[sin(2x3)]cos(2x3)3x2

Explanation:

Let y=sin(2x3)

Differentiating w.r.t. x

dydx=ddxsin(2x3)

dydx=12[sin(2x3)]ddxsin(2x3)

dydx=12[sin(2x3)]cos(2x3)ddx2x3

dydx=12[sin(2x3)]cos(2x3)(3x2)

dydx=12[sin(2x3)]cos(2x3)3x2

This will be the differentiated function.