How do you solve x^2+21x+110=0x2+21x+110=0?

3 Answers
Mar 23, 2016

x= -10x=10 AND x = -11x=11

Explanation:

x^2 +21x+110= 0x2+21x+110=0 The trinomial in this equation can be factored into the product of two binomials. Look for two numbers which multiply to give a product of 110 and have a sum of 21. In this case the numbers are 1010 and 1111.

(10)(11) =110(10)(11)=110 and 10+11=2110+11=21

So, x^2+21x+110= 0x2+21x+110=0 can be rewritten as:

(x+10)(x+11)=0(x+10)(x+11)=0. Now either

(x+10) =0(x+10)=0 and therefore x=-10x=10

or (x+11)=0(x+11)=0 and x=-11x=11

Mar 23, 2016

x=-10,-11x=10,11

Explanation:

color(blue)(x^2+21x+110=0x2+21x+110=0

You can solve this both by factoring and Quadratic formula

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Factoring

If you have a problem with factoring

Watch this video:

Factor the equation

rarr(x+10)+(x+12)=0(x+10)+(x+12)=0

Now we can say

color(orange)(x+10=0,x+11=0x+10=0,x+11=0

color(green)(rArrx=-10,-11x=10,11

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This is a Quadratic equation (in form ax^2+bx+c=0ax2+bx+c=0)

Quadratic formula

color(brown)(x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a

Where

color(red)(a=1,b=21,c=110a=1,b=21,c=110

rarrx=(-21+-sqrt(21^2-4(1)(110)))/(2(1))x=21±2124(1)(110)2(1)

rarrx=(-21+-sqrt(21^2-4(110)))/(2)x=21±2124(110)2

rarrx=(-21+-sqrt(441-440))/(2)x=21±4414402

rarrx=(-21+-sqrt(1))/(2)x=21±12

rarrx=(-21+-1)/(2)x=21±12

Now we have two solutions

color(indigo)(1))color(indigo)((-21+1)/2=-20/2=-101)21+12=202=10

color(orange)(2))color(orange)((-21-1)/2=-22/2=-112)2112=222=11

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)( :.ul bar |x=-10,-11|

Mar 23, 2016

(x + 10)(x + 11)

Explanation:

y = x^2 + 21x + 110 = 0
Use the new AC Method to factor trinomials (Socratic Search).
Find 2 numbers knowing sum (b = 21) and product (c = 11).
Since ac > 0, they have same sign.
Compose factor pairs of (c = 110) --> ...(5, 22)(10, 11). This sum is 21 = b. Then the numbers are 10 and 11.
Answer: y = (x + 10)(x + 11)