How do you solve 0= -2x^2 -8x +90=2x28x+9 using the quadratic formula?

1 Answer
Mar 23, 2016

x_1=-2-sqrt(34)/2x1=2342

x_2=-2+sqrt(34)/2x2=2+342

Explanation:

To simply the computation rewrite equation as:

-2x^2-8x+9=02x28x+9=0

Moltiply both LHS and RHS by -11 to obtain

2x^2+8x-9=02x2+8x9=0

Now the Quadratic Formula is:

x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)x1,2=b±b24ac2a

with: a=2a=2, b=8b=8 and c=-9c=9

x_(1,2)=(-8+-sqrt(64+72))/4=(-8+-sqrt(136))/4=x1,2=8±64+724=8±1364=
=-2+-sqrt(2^3*17)/4=-2+-cancel(2)sqrt(2*17)/cancel(4)^2=
=-2+-sqrt(34)/2

x_1=-2-sqrt(34)/2

x_2=-2+sqrt(34)/2

graph{2x^2+8x-9 [-7.023, 7.024, -3.51, 3.513]}