How do you find the exact value of cos[2 arcsin (-3/5) - arctan (5/12)]cos[2arcsin(35)arctan(512)]?

2 Answers
Mar 28, 2016

Possible values are +-0.1108±0.1108 or +-0.6277±0.6277

Explanation:

arcsin(−3/5)=xarcsin(35)=x means sinx=(-3/5)=-0.6sinx=(35)=0.6.

As sinx=0.6sinx=0.6 for x=36.87^ox=36.87o and sine is negative in third and fourth quadrant, x=180^o+36.87^ox=18036.87o or 216.87^o216.87o and x=360^o-36.87^o=323.13^ox=360o36.87o=323.13o.

arctan(5/12)=xarctan(512)=x means tanx=(5/12)tanx=(512).

As tanx=5/12tanx=512 for x=22.62^ox=22.62o and tan is positive in first and third quadrant, x=22.62^ox=22.62o or x=180^o +22.62^ox=180o+22.62o.or 202.62^o202.62o.

Hence cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx216.87^o-22.62^o]=cos411.12^o=cos51.12^o=0.6277cos{2arcsin(35)arctan(512)]=cos[2×216.87o22.62o]=cos411.12o=cos51.12o=0.6277 or

cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx216.87^o-202.62^o]=cos411.12^o=cos231.12^o=-0.6277cos{2arcsin(35)arctan(512)]=cos[2×216.87o202.62o]=cos411.12o=cos231.12o=0.6277 or

cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx323.13^o-22.62^o]=cos623.64^o=-0.1108cos{2arcsin(35)arctan(512)]=cos[2×323.13o22.62o]=cos623.64o=0.1108 or

cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx323.13^o-202.62^o]=cos443.64^o=0.1108cos{2arcsin(35)arctan(512)]=cos[2×323.13o202.62o]=cos443.64o=0.1108

Mar 28, 2016

Values in exactitude are +-12/125±12125 and +-68/125±68125.

Explanation:

Let A = arc sin (-3/5)A=arcsin(35) and B=arc tan (5/12)B=arctan(512).
Then, sin A = -3/5, cos A = +-4/5sinA=35,cosA=±45.

cos 2A = 1-2 sin^2A=7/25cos2A=12sin2A=725

sin 2A=2 sin A cos A=-24/25 and 24/25sin2A=2sinAcosA=2425and2425, respectively..

Also, tan B=5/12, (sin B =5/13, cos B=12/13) and (sin B =-5/13, cos B=-12/13) tanB=512,(sinB=513,cosB=1213)and(sinB=513,cosB=1213)

The given expression is

cos(2A-B) = cos 2A cos B+sin 2A sin B

= +-(84+-120)/375±84±120375.

Note that both sin B and cos B have the same sign + or -.