How do you solve 2sin^2x = 2 + cosx2sin2x=2+cosx in the interval 0 to 2pi?

1 Answer
Mar 28, 2016

First, perform a Pythagorean substitution to remove the sine term from the left side: 2(1-cos^2(x))=2 + cos(x)2(1cos2(x))=2+cos(x) .

Explanation:

Simplify the left side : 2-2cos^2(x)=2+cos(x)22cos2(x)=2+cos(x)
Gather like terms and set equal to 0: 0=2cos^2(x)+cos(x)0=2cos2(x)+cos(x)
Factor the right side: 0=cos(x)(2cos(x) + 1)0=cos(x)(2cos(x)+1)
Use the Zero Product Property:
cos(x) = 0cos(x)=0 or 2cos(x)+1=02cos(x)+1=0
cos(x)=0cos(x)=0 or 2cos(x) = -12cos(x)=1
cos(x)=0cos(x)=0 or cos(x) = -1/2cos(x)=12
So, x = cos^-1(0)x=cos1(0) or x = cos^-1(-1/2)x=cos1(12)
x = pi/2π2 , (3*pi)/23π2, or (2*pi)/32π3, (4*pi)/34π3