How do you find all the solutions in the interval [0, 2pi): 2 cos^2(2x) - 1 = 02cos2(2x)1=0?

1 Answer
Mar 28, 2016

Isolate the angle 2x, by following the reverse "order of operations".

Explanation:

Step 1: Add 1 to both sides:
2cos^2(2x)=12cos2(2x)=1

Step 2: Divide both sides by 2:
cos^2(2x) = 1/2cos2(2x)=12

Step 3: Take the square root of both sides:
cos(2x) =(sqrt(2))/2 or cos(2x) =(-sqrt(2))/2cos(2x)=22orcos(2x)=22
(don't forget the positive and negative solutions!)

Step 4: Use inverse of cosine to find the angles:
2x = cos^-1(sqrt(2)/2) or2x = cos^-1(-sqrt(2)/2) 2x=cos1(22)or2x=cos1(22)

Step 5: Find angles that work:
2x = pi/4 or 2x = (7pi)/4 or 2x=(3pi)/4 or 2x = (5pi)/42x=π4or2x=7π4or2x=3π4or2x=5π4

Step 6: Solve for x:
x = pi/8, (7pi)/8, (3pi)/8, (5pi)/8x=π8,7π8,3π8,5π8 or .785, 5.5, 2.36, 3.93
(decimal approximations are seen on the graph below)

my screen shot