Question #6daa9

2 Answers
Apr 5, 2016

x = frac{ln(2) + 2}{5}x=ln(2)+25

Explanation:

Take the natural logarithm on both sides

ln(e^{3x} * e^{2x-1}) = ln(2e)ln(e3xe2x1)=ln(2e)

From the identity

ln(ab) = ln(a) + ln(b)ln(ab)=ln(a)+ln(b)

We can simplify the above equation as

ln(e^{3x}) + ln(e^{2x-1}) = ln(2) + ln(e)ln(e3x)+ln(e2x1)=ln(2)+ln(e)

3x + (2x-1) = ln(2) + 13x+(2x1)=ln(2)+1

5x = ln(2) + 25x=ln(2)+2

x = frac{ln(2) + 2}{5}x=ln(2)+25

Apr 5, 2016

A slightly different approach

=>x = (ln(2)+2)/5x=ln(2)+25

Explanation:

Given:" "e^(3x) xx e^(2x-1)=2e e3x×e2x1=2e

Compare to 10^2xx10^1 = 10^3 =10^(2+1)102×101=103=102+1

Using the above method we have;

" "e^(3x) xx e^(2x-1)=2e" "->" "e^(3x+2x-1)=2e e3x×e2x1=2e e3x+2x1=2e

Divide both sides by ee

e^(3x+2x-2)=2e3x+2x2=2

=>e^(5x-2)=2e5x2=2

Take logs of both sides

(5x-2)ln(e)=ln(2)(5x2)ln(e)=ln(2)

But ln(e)=1ln(e)=1

5x-2=ln(2)5x2=ln(2)

=>x=(ln(2)+2)/5x=ln(2)+25