Question #6daa9
2 Answers
Explanation:
Take the natural logarithm on both sides
ln(e^{3x} * e^{2x-1}) = ln(2e)ln(e3x⋅e2x−1)=ln(2e)
From the identity
ln(ab) = ln(a) + ln(b)ln(ab)=ln(a)+ln(b)
We can simplify the above equation as
ln(e^{3x}) + ln(e^{2x-1}) = ln(2) + ln(e)ln(e3x)+ln(e2x−1)=ln(2)+ln(e)
3x + (2x-1) = ln(2) + 13x+(2x−1)=ln(2)+1
5x = ln(2) + 25x=ln(2)+2
x = frac{ln(2) + 2}{5}x=ln(2)+25
A slightly different approach
Explanation:
Given:
Compare to
Using the above method we have;
Divide both sides by
Take logs of both sides
But