How do you find the derivative of sinh^(79x)?

1 Answer
Apr 5, 2016

If it is operator (sinh)^79, operating oh the operand x and f_79=((sinh)^79)x, the derivative f'_79 is the product (cosh f_78) (cosh f_77)(cosh f_76)...(cosh f_1)(cosh x)

Explanation:

Let f_79=(sinh^79)(x).

Then f_79=sinh (f_78).

It follows that

f'_79=cosh (f_78) f'_78, using function pf function rule.

This is a reduction formula.

Successive reduction leads to

f'_79=(cosh f_78) (cosh f_77)(cosh f_76)...(cosh f_1)(cosh x)

f_1=sinh x. f'_1=cosh x. .