How do you simplify (b^3 a^5)/(b^2 a^4)b3a5b2a4?

2 Answers
Apr 10, 2016

(b^3a^5)/(b^2a^4)=bab3a5b2a4=ba

Explanation:

(b^3a^5)/(b^2a^4)=(b*b*b*a*a*a*a*a)/(b*b*a*a*a*a)b3a5b2a4=bbbaaaaabbaaaa

So you should cancel b's and a's in nominator and denominator. So the result would be b*aba.

More scientifically:

(b^3a^5)/(b^2a^4)= b^(3-2) * a^(5-4) = b^1 * a^1 = b*a b3a5b2a4=b32a54=b1a1=ba

Apr 10, 2016

ab

Explanation:

Using the following color(blue)" rule of exponents " rule of exponents

color(red)(|bar(ul(color(white)(a/a)color(black)( a^m/a^n hArr a^(m-n))color(white)(a/a)|)))

rArr (b^3a^5)/(b^2a^4) = b^3/b^2xxa^5/a^4 = b^(3-2)xxa^(5-4) = ab