How do you prove #(1-cos(x)) / sin(x) = csc(x) - cot(x) #?
1 Answer
Apr 30, 2016
Recall the following identities:
Given,
#(1-cosx)/sinx=cscx-cotx#
Simplify the right side.
#color(red)(cscx)-color(blue)(cotx)#
#=color(red)(1/sinx)-color(blue)(cosx/sinx)#
#=(1-cosx)/sinx#
#:.# , LS#=# RS.