How do you prove (1-cos(x)) / sin(x) = csc(x) - cot(x) 1cos(x)sin(x)=csc(x)cot(x)?

1 Answer
Apr 30, 2016

Recall the following identities:

1. color(red)(cscx=1/sinx)1.cscx=1sinx

2. color(blue)(cotx=cosx/sinx)2.cotx=cosxsinx

Given,

(1-cosx)/sinx=cscx-cotx1cosxsinx=cscxcotx

Simplify the right side.

color(red)(cscx)-color(blue)(cotx)cscxcotx

=color(red)(1/sinx)-color(blue)(cosx/sinx)=1sinxcosxsinx

=(1-cosx)/sinx=1cosxsinx

:., LS=RS.