How do you find the vertical, horizontal and slant asymptotes of: (x^2-25)/(x^2+5x)x2−25x2+5x?
1 Answer
vertical asymptote:
horizontal asymptote:
slant asymptote: does not exist
Explanation:
Finding the Vertical Asymptote
Given,
f(x)=(x^2-25)/(x^2+5x)f(x)=x2−25x2+5x
Factor the numerator.
f(x)=((x+5)(x-5))/(x(x+5)f(x)=(x+5)(x−5)x(x+5)
Cancel out any factors that appear in the numerator and denominator.
f(x)=(x-5)/xf(x)=x−5x
Set the denominator equal to
color(green)(|bar(ul(color(white)(a/a)color(black)(x=0)color(white)(a/a)|)))
Finding the Horizontal Asymptote
Given,
f(x)=(color(darkorange)1x^2-25)/(color(purple)1x^2+5x)
Divide the
f(x)=color(darkorange)1/color(purple)1
color(green)(|bar(ul(color(white)(a/a)color(black)(f(x)=1)color(white)(a/a)|)))
Finding the Slant Asymptote
Given,
f(x)=(x^2-25)/(x^2+5x)
There would be a slant asymptote if the degree of the leading term in the numerator was
:. , the slant asymptote does not exist.