How do you find the asymptotes for #f(x) = ((3x + 1)^2 * (4x - 3) )/ ((2x + 1) * (x-1)^2)#?
1 Answer
vertical asymptotes:
horizontal asymptote:
oblique asymptote: does not exist
Explanation:
Finding the Vertical Asymptotes
Given the function,
#f(x)=((3x+1)^2*(4x-3))/((2x+1)*(x-1)^2)#
Cancel out any factors which appear in the numerator and denominator. Since there aren't any, set the denominator equal to
#(2x+1)*(x-1)^2=0#
#2x+1=0color(white)(XXXXXXXX)(x-1)^2=0#
#2x=-1color(white)(XXXXXXXXX)x-1=0#
#color(green)(|bar(ul(color(white)(a/a)color(black)(x=-1/2)color(white)(a/a)|)))color(white)(XXXXXX)color(green)(|bar(ul(color(white)(a/a)color(black)(x=1)color(white)(a/a)|)))#
Finding the Horizontal Asymptote
Given the function,
#f(x)=((3x+1)^2*(4x-3))/((2x+1)*(x-1)^2)#
Expand the brackets.
#f(x)=((9x^2+6x+1) * (4x-3))/((2x+1) * (x^2-2x+1))#
#f(x)=(36x^3+24x^2+4x-27x^2-18x-3)/(2x^3-4x^2+2x+x^2-2x+1)#
#f(x)=(color(darkorange)36x^3-3x^2-14x-3)/(color(purple)2x^3-3x^2+1)#
Since the degree of the numerator is the same as the degree of the denominator, divide the
#f(x)=color(darkorange)36/color(purple)2#
#color(green)(|bar(ul(color(white)(a/a)color(black)(f(x)=18)color(white)(a/a)|)))#
Finding the Oblique Asymptote
Given,
#f(x)=((3x+1)^2*(4x-3))/((2x+1)*(x-1)^2)=(36x^color(red)3-3x^2-14x-3)/(2x^color(blue)3-3x^2+1)#
There would be a slant asymptote if the
#:.# , the slant asymptote does not exist.
graph{(36x^3+24x^2+4x-27x^2-18x-3)/(2x^3-4x^2+2x+x^2-2x+1) [-2, 2, -20, 20]}