How do you find the derivative of #f(x)=5sqrtx#?
1 Answer
May 11, 2016
Explanation:
Given,
#f(x)=5sqrt(x)#
Rewrite the expression using
#d/(dx)(5sqrt(x))#
Using the multiplication by a constant rule,
#=5*d/(dx)(sqrt(x))#
Rewrite
#=5*d/(dx)(x^(1/2))#
Using the power rule,
#=5*1/2x^(1/2-1)#
Simplify.
#=5*1/2x^(-1/2)#
#=5/2(1/x)^(1/2)#
#=5/2((1)/(sqrt(x)))#
#=color(green)(|bar(ul(color(white)(a/a)color(black)(5/(2sqrt(x)))color(white)(a/a)|)))#