How do you implicitly differentiate 11=(x)/(1-ye^x)11=x1yex?

1 Answer
May 13, 2016

Consider f(x,y(x))=0f(x,y(x))=0 taking the derivative gives
(df)/dx = (f_x) +(f_y) (dy)/dx = 0dfdx=(fx)+(fy)dydx=0 so (dy)/dx=-f_x/f_ydydx=fxfy.
Now f(x,y) = x/(1-ye^x)-11f(x,y)=x1yex11
f_x = d/dx(x/(1-ye^x)-11) = (1-e^x(x-1)y)/(e^x y-1)^2fx=ddx(x1yex11)=1ex(x1)y(exy1)2
f_y = d/dy(x/(1-ye^x)-11) = (y(x-1)-e^-x)/(e^x y-1)^2fy=ddy(x1yex11)=y(x1)ex(exy1)2
finally (dy)/dx =(y(1-x)-e^-x)/x dydx=y(1x)exx