How do you determine if # f(x)=x/(x+1)# is an even or odd function?

1 Answer
May 14, 2016

#f(x)# is neither (not even or odd)

Explanation:

To determine if the given function is even or odd, you must prove the following cases:

#1#. If the function is even, then #f(-x)=f(x)#.
#2#. If the function is odd, then #f(-x)=-f(x)#.

Note that if the function is neither even nor odd, then it is neither.

Case 1 - Even Test
Determine the left and right sides of the given function using #f(-x)=f(x)#.

#"LS"=f(-x)color(white)(XXXXXXXXX)"RS"=f(x)#

#"LS"=((-x))/((-x)+1)color(white)(XXXXXXX)"RS"=color(blue)(|bar(ul(color(white)(a/a)color(black)(x/(x+1))color(white)(a/a)|)))#

#"LS"=color(blue)(|bar(ul(color(white)(a/a)color(black)((-x)/(-x+1))color(white)(a/a)|)))#

Since #"LS"##!=##"RS"#, #f(x)# is not even.

Case 2 - Odd Test
Determine the left and right sides of the given function using #f(-x)=-f(x)#.

#"LS"=f(-x)color(white)(XXXXXXXXX)"RS"=-f(x)#

#"LS"=((-x))/((-x)+1)color(white)(XXXXXXX)"RS"=-(x/(x+1))#

#"LS"=color(blue)(|bar(ul(color(white)(a/a)color(black)((-x)/(-x+1))color(white)(a/a)|)))color(white)(XXXXxx)"RS"=color(blue)(|bar(ul(color(white)(a/a)color(black)((-x)/(x+1))color(white)(a/a)|)))#

Since #"LS"##!=##"RS"#, #f(x)# is not odd.

The Conclusion
From the even and odd tests, since the given function is neither even nor odd, it is neither.

#:.#, #f(x)# is neither.