How do you evaluate cos(13π8)?

2 Answers
May 14, 2016

=12(22)

Explanation:

using formula cosθ=12(1+cos(2θ))
cos(13π8)
=12(1+cos(213π8))

=12(1+cos(13π4))

=12(1+cos(3π+π4))

=12(1cos(π4))

=12(112)

=2122

=222×2

=12(22)

May 14, 2016

222

Explanation:

cos(13π8)=cos(3π8+cos(16π8))=cos(3π8+2π)=
=cos(3π8).
Evaluate cos(3π8) by applying the trig identity:
cos2a=2cos2a1.
In this case, we get -->
2cos2(3π8)1=cos(6π8)=cos(3π4)=22
2cos2(3π8)=122=222
cos2(3π8)=224
cos(3π8)=±222
cos(13π8)=cos(3π8)=222 , because
cos(3π8) is positive.