How do you solve (tanx-1)(2sinx+1)=0(tanx1)(2sinx+1)=0?

1 Answer
May 15, 2016

degrees: x=45^@,225^@,210^@,330^@x=45,225,210,330
radians: x=pi/4,5/4pi,7/6pi,11/6pix=π4,54π,76π,116π

Explanation:

Given,

(tanx-1)(2sinx+1)=0(tanx1)(2sinx+1)=0

In order for the equation to equal to 00, either one of the factors must equal to 00. Thus, set each factor to 00 and solve for xx. Don't forget about the C.A.S.T. rule!

tanx-1=0color(white)(XXXXXXX)2sinx+1=0tanx1=0XXXXXXX2sinx+1=0

tanx=1color(white)(XXXXXXXXX)sinx=-1/2tanx=1XXXXXXXXXsinx=12

x=color(green)(ul(color(black)(45^@)))or color(green)(ul(color(black)(225^@)))color(white)(XXXXXX)x=color(green)(ul(color(black)(210^@)))or color(green)(ul(color(black)(330^@)))

color(white)(XXx)color(green)(ul(color(black)(pi/4))) or color(green)(ul(color(black)(5/4pi)))color(white)(XXXXXXXXXx)color(green)(ul(color(black)(7/6pi))) or color(green)(ul(color(black)(11/6pi)))