How do you solve (tanx-1)(2sinx+1)=0(tanx−1)(2sinx+1)=0?
1 Answer
degrees:
radians:
Explanation:
Given,
(tanx-1)(2sinx+1)=0(tanx−1)(2sinx+1)=0
In order for the equation to equal to
tanx-1=0color(white)(XXXXXXX)2sinx+1=0tanx−1=0XXXXXXX2sinx+1=0
tanx=1color(white)(XXXXXXXXX)sinx=-1/2tanx=1XXXXXXXXXsinx=−12
x=color(green)(ul(color(black)(45^@))) orcolor(green)(ul(color(black)(225^@)))color(white)(XXXXXX)x=color(green)(ul(color(black)(210^@))) orcolor(green)(ul(color(black)(330^@)))
color(white)(XXx)color(green)(ul(color(black)(pi/4))) orcolor(green)(ul(color(black)(5/4pi)))color(white)(XXXXXXXXXx)color(green)(ul(color(black)(7/6pi))) orcolor(green)(ul(color(black)(11/6pi)))