How do you use DeMoivre's Theorem to find (1+i)^20(1+i)20 in standard form?
1 Answer
Divide by the norm of
Explanation:
De Moivre's formula, which can be derived from Euler's formula that
However, as
=(sqrt(2))^20(sqrt(2)/2+sqrt(2)/2i)^20=(√2)20(√22+√22i)20
=1024(cos(pi/4)+isin(pi/4))^20=1024(cos(π4)+isin(π4))20
=1024(cos(20*pi/4)+isin(20*pi/4))=1024(cos(20⋅π4)+isin(20⋅π4))
=1024(cos(5pi)+isin(5pi))=1024(cos(5π)+isin(5π))
=1024(-1+i*0)=1024(−1+i⋅0)
=-1024=−1024