How do you verify #(1+csc(x))/(cot(x)+cos(x)) = sec(x)#?
1 Answer
May 21, 2016
On the left side,
#(1+cscx)/(cotx+cosx)#
Rewrite
#=(1+color(blue)(1/(sinx)))/(color(purple)((cosx)/(sinx))+cosx)#
Simplify.
#=((sinx+1)/(sinx))/((cosx+sinxcosx)/(sinx))#
#=(sinx+1)/(sinx)*(sinx)/(cosx+sinxcosx)#
#=(sinx+1)/(color(red)cancelcolor(black)(sinx))*(color(red)cancelcolor(black)(sinx))/(cosx+sinxcosx)#
#=(sinx+1)/(cosx+sinxcosx)#
Factor out
#=(sinx+1)/(cosx(1+sinx))#
Simplify.
#=color(red)cancelcolor(black)(sinx+1)/(cosxcolor(red)cancelcolor(black)((1+sinx)))#
#=1/cosx#
#=secx#