How do you solve #-4(2x-1) = -6(x+2) -2#?

1 Answer
May 22, 2016

#x=9#

Explanation:

Given,

#-4(2x-1)=-6(x+2)-2#

Expand the brackets.

#-8x+4=-6x-12-2#

Simplify.

#-8x+4=-6x-14#

Subtract #4# from both sides.

#-8x+4color(white)(i)color(red)(-4)=-6x-14color(white)(i)color(red)(-4)#

#-8x=-6x-18#

Add #6x# to both sides.

#-8xcolor(white)(i)color(red)(+6x)=-6xcolor(white)(i)color(red)(+6x)-18#

#-2x=-18#

Divide both sides by #-2#.

#color(red)((color(black)(-2x))/(-2))=color(red)((color(black)(-18))/(-2))#

#color(green)(|bar(ul(color(white)(a/a)color(black)(x=9)color(white)(a/a)|)))#