How do you simplify ((3^6)^n times (81)^(2n)) / (3^n)^4?

1 Answer
May 27, 2016

= color(green)(3^(10n)

Explanation:

((3^6)^n xx (81)^(2n)) /((3^n)^4

  • Simplifying 81 by prime factorisation (expressing a number as a product of its prime factors):

81 = 3 * 3 * 3 * 3 = color(blue)(3^4

So, 81 ^(2n) = (3^4 )^(2n)

  • Applying below mentioned property to the expression:
    color(blue)(a^m)^n =a ^(mn)
  • (3^4 )^(2n) = color(green)( 3 ^(8n)

  • (3^6)^n = 3^(6n)

  • (3^n)^4 = 3^(4n)

The expression can now be written as:

((3^6)^n xx (81)^(2n)) /((3^n)^4 ) = (3^(6n) xx color(green)( 3 ^(8n))) /(3^ ( 4n)

  • Applying below mentioned property to the numerator:
    color(blue)(a^m xx a^n = a ^(m+n)

=3^((6n + 8n)) /(3^ ( 4n)

=3^(14n) /(3^ ( 4n)

  • Applying below mentioned property to the expression:
    color(blue)(a^m / a ^n = a ^(m-n)

=3^((14n - 4n))

= color(green)(3^(10n)