What is the derivative of #y=x^(5x)#?

1 Answer
May 30, 2016

#\frac{d}{dx}\(x^{5x}\)=5x^{5x}\(\ln \(x\)+1)#

Explanation:

#\frac{d}{dx}\(x^{5x})#

Applying exponent rule,
#a^b=e^{b\ln \(a\)}#

#x^{5x}=e^{5x\ln \(x\)}#

#=\frac{d}{dx}\(e^{5x\ln \(x\)}\)#

Applying chain rule,
#\frac{df\(u\)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}#

Let #5x\ln \(x\)=u#

#=\frac{d}{du}\(e^u\)\frac{d}{dx}\(5x\ln \(x\)\)#

We know,
#\frac{d}{du}\(e^u\)=e^u#
and,
#\frac{d}{dx}\(5x\ln \(x\)\)=5\(\ln \(x\)+1\)#

So,
#\frac{d}{dx}\(5x\ln \(x\)\)=5\(\ln (x\)+1\)#

Substituting back,
#u=5x\ln \(x\)#

Simplifying,
#\frac{d}{dx}\(x^{5x}\)=5x^{5x}\(\ln \(x\)+1\)#