What is the derivative of y=x^(5x)y=x5x?

1 Answer
May 30, 2016

\frac{d}{dx}(x^{5x})=5x^{5x}(\ln (x)+1)ddx(x5x)=5x5x(ln(x)+1)

Explanation:

\frac{d}{dx}(x^{5x})ddx(x5x)

Applying exponent rule,
a^b=e^{b\ln (a)}ab=ebln(a)

x^{5x}=e^{5x\ln (x)}x5x=e5xln(x)

=\frac{d}{dx}(e^{5x\ln (x)})=ddx(e5xln(x))

Applying chain rule,
\frac{df(u)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}df(u)dx=dfdududx

Let 5x\ln (x)=u5xln(x)=u

=\frac{d}{du}(e^u)\frac{d}{dx}(5x\ln (x))=ddu(eu)ddx(5xln(x))

We know,
\frac{d}{du}(e^u)=e^uddu(eu)=eu
and,
\frac{d}{dx}(5x\ln (x))=5(\ln (x)+1)ddx(5xln(x))=5(ln(x)+1)

So,
\frac{d}{dx}(5x\ln (x))=5(\ln (x)+1)ddx(5xln(x))=5(ln(x)+1)

Substituting back,
u=5x\ln (x)u=5xln(x)

Simplifying,
\frac{d}{dx}(x^{5x})=5x^{5x}(\ln (x)+1)ddx(x5x)=5x5x(ln(x)+1)