How do you solve 2^(x) - 2^(-x) = 5?

2 Answers
May 31, 2016

x=log_2(5+sqrt29)-1

Explanation:

Since a^-b=1/a^b, the equation can be rewritten as

2^x-1/2^x=5

Multiply each term by 2^x.

2^x(2^x)-1/2^x(2^x)=5(2^x)

To simplify 2^x(2^x), use the rule a^b(a^c)=a^(b+c):

2^(x+x)-1=5(2^x)

2^(2x)-5(2^x)-1=0

Let u=2^x. Then, 2^(2x)=(2^x)^2=u^2 and 5(2^x)=5u.

u^2-5u-1=0

Use the quadratic formula to show that

u=(-(-5)+-sqrt(5^2-(4*-1*1)))/(2*1)=(5+-sqrt29)/2

Recall that u=2^x.

2^x=(5+sqrt29)/2

x=log_2((5+sqrt29)/2)

Using log_a(b/c)=log_a(b)-log_a(c):

x=log_2(5+sqrt29)-log_2(2)

x=log_2(5+sqrt29)-1

As for the negative version of (5+-sqrt29)/2, we see that

2^x=(5-sqrt29)/2

Has no solutions since (5-sqrt29)/2<0 and 2^x>0 for all values of x.

May 31, 2016

x = log_e(1/2 (5 + sqrt[29]))/log_e(2)

Explanation:

Taking y = 2^x we have

y -1/y=5->y^2-5y-1=0

Solving for y

y = 1/2 (5 - sqrt[29]), y = 1/2 (5 + sqrt[29])

but 1/2 (5 - sqrt[29]) < 0 and y = 2^x > 0 Now solving for x

so

x = log_e(1/2 (5 + sqrt[29]))/log_e(2)