How do you convert 0.8 (8 repeating) to a fraction?

1 Answer
Jun 7, 2016

0.bar8=8/90.¯8=89

Explanation:

We have a repeating decimal, 0.bar80.¯8

Let us put this equal to xx.

Then,

x=0.bar8x=0.¯8

Multiply both sides by 1010:

10x=8.bar810x=8.¯8

We can write this 8.bar88.¯8 as a sum of a whole number and a decimal number:

10x=color(red)(8)+color(blue)(0.bar8)10x=8+0.¯8

Now, we know that x=0.bar8x=0.¯8

10x=8+x10x=8+x

10xcolor(red)(-x)=8+xcolor(red)(-x)10xx=8+xx

9x=89x=8

(9x)/color(red)(9)=8/color(red)(9)9x9=89

x=8/9x=89

Therefore,

0.bar8=8/90.¯8=89