What does #cos(arctan(pi/2))-sin(arc cot(pi/4)) # equal?

1 Answer
Jun 8, 2016

#cos (arc tan (frac{pi }{2}))-sin (arc cot (frac{pi }{4}))=frac{2}{sqrt{pi ^2+4}}-frac{4}{sqrt{pi ^2+16}}#

Explanation:

#cos (arctan (frac{pi }{2}))-sin (arc cot (frac{pi }{4}))#
We know,
#cos (arctan (frac{pi }{2}))#
using the following identity,
#cos (arctan (x))=frac{1}{sqrt{1+x^2}}#
#=frac{1}{sqrt{1+(frac{pi }{2})^2}}#
Refining it,
#=\frac{2}{\sqrt{4+\pi ^2}}#

Also,
#sin (arc cot (frac{pi }{4}))#
using the following identity,
#sin (arc cot (x))=frac{1}{sqrt{1+x^2}}#
#sin (arc cot (x))=frac{1}{sqrt{1+x^2}}#
Refining it,
#=frac{4}{sqrt{16+pi ^2}}#

Finally,
#=frac{2}{sqrt{pi ^2+4}}-frac{4}{sqrt{pi ^2+16}}#