What does cos(arctan(pi/2))-sin(arc cot(pi/4)) cos(arctan(π2))sin(arccot(π4)) equal?

1 Answer
Jun 8, 2016

cos (arc tan (frac{pi }{2}))-sin (arc cot (frac{pi }{4}))=frac{2}{sqrt{pi ^2+4}}-frac{4}{sqrt{pi ^2+16}}cos(arctan(π2))sin(arccot(π4))=2π2+44π2+16

Explanation:

cos (arctan (frac{pi }{2}))-sin (arc cot (frac{pi }{4}))cos(arctan(π2))sin(arccot(π4))
We know,
cos (arctan (frac{pi }{2}))cos(arctan(π2))
using the following identity,
cos (arctan (x))=frac{1}{sqrt{1+x^2}}cos(arctan(x))=11+x2
=frac{1}{sqrt{1+(frac{pi }{2})^2}}=11+(π2)2
Refining it,
=\frac{2}{\sqrt{4+\pi ^2}}=24+π2

Also,
sin (arc cot (frac{pi }{4}))sin(arccot(π4))
using the following identity,
sin (arc cot (x))=frac{1}{sqrt{1+x^2}}sin(arccot(x))=11+x2
sin (arc cot (x))=frac{1}{sqrt{1+x^2}}sin(arccot(x))=11+x2
Refining it,
=frac{4}{sqrt{16+pi ^2}}=416+π2

Finally,
=frac{2}{sqrt{pi ^2+4}}-frac{4}{sqrt{pi ^2+16}}=2π2+44π2+16