How do you find the antiderivative of e^(sinx)*cosx?

1 Answer

Use a u-substitution to find inte^sinx*cosxdx=e^sinx+C.

Explanation:

Notice that the derivative of sinx is cosx, and since these appear in the same integral, this problem is solved with a u-substitution.

Let u=sinx->(du)/(dx)=cosx->du=cosxdx

inte^sinx*cosxdx becomes:
inte^udu

This integral evaluates to e^u+C (because the derivative of e^u is e^u). But u=sinx, so:
inte^sinx*cosxdx=inte^udu=e^u+C=e^sinx+C