How do you solve |x+2|+|2x4|=|x3|?

1 Answer
Jun 28, 2016

The equation has no solution.

Explanation:

f(x)=|x+2|+|2x4||x3|=0

Making |x+2|=y=|x3||2x4|=0
we have x=±y2.

I) Choosing x=y2

y=|y5||2y8|
y5=|y5||2y8|5
1=±1|2y8|+5y5 for y5

Here we have two possibilities:

I-1)
0=|2y8|+5 having two outcomes
I-1-a)
2y8=5y=32
I-1-b)
2y8=5y=132

I-2)
2=|2y8|+5y5
2(y5)=|2y8|5
2y10=|2y8|5
2y8=|2y8|3
1=±132y8
with the only posibility
2=32y8y=134

II) Choosing x=(y+2)

y+|2y+8||y+5|=0
y+2|y+4||y+5|=0
y4+2|y+4||y+5|+4=0
(y+4)+2|y+4||y+5|+4=0
1±2+|y+5|4y+4=0 with two outcomes
II-1)
3+|y+5|4y+4=0
3(y+4)+|y+5|4=0
3(y+5)+|y+5|43=0
3±17y+5=0 with two outcomes
II-1-a)
4(y+5)=7y=134
II-1-b)
2(y+5)=7y=32

II-2)
1+|y+5|4y+4=0
(y+4)+|y+5|4=0
(y+5)+|y+5|4+1=0
1±1+3y+5=0
with the only outcome
2(y+5)+3=0y=72

Collecting the results obtained for x=y2

y={32,132,134}x={12,92,54}

and for x=(y+2)

y={134,32,72}x={54,12,32}

Substituting in f(x) none of them is solution.