How do you solve x²-6x+3=0 using the quadratic formula?

1 Answer
Jun 28, 2016

The solutions are:
color(blue)( x = 3 + sqrt6

color(blue)( x = 3 - sqrt6

Explanation:

x^2 - 6x +3 = 0

The equation is of the form color(blue)(ax^2+bx+c=0 where:
a=1, b=-6, c=3

The Discriminant is given by:

Delta=b^2-4*a*c

= (-6)^2-(4* 1 * 3)

= 36 - 12= 24

The solutions are found using the formula
x=(-b+-sqrtDelta)/(2*a)

x = (-(-6)+-sqrt(24))/(2*1) = (6+-sqrt(24))/2

sqrt24 can be further simplified as follows:

sqrt24 = sqrt ( 2 * 2 * 2 * 3) = sqrt ( 2 ^2 * 2 * 3 ) = 2 sqrt6

x= (6+-2sqrt(6))/2

x= (2 ( 3 +- sqrt(6)))/2

x= (cancel2 ( 3 +- sqrt(6)))/cancel2

The solutions are:
color(blue)( x = 3 + sqrt6
color(blue)( x = 3 - sqrt6