How do you verify (1 + sec^2 x) / (1 + tan^2 x) = 1 + cos^2 x1+sec2x1+tan2x=1+cos2x?

1 Answer
Jul 3, 2016

Use the Pythagorean Identity 1+tan^2x=sec^2x1+tan2x=sec2x.

Explanation:

Recall the Pythagorean Identity 1+tan^2x=sec^2x1+tan2x=sec2x (this can be derived by dividing the identity sin^2x+cos^2x=1sin2x+cos2x=1 by cos^2xcos2x). The key to this problem is applying this identity.

Since 1+tan^2x=sec^2x1+tan2x=sec2x, we can replace the 1+tan^2x1+tan2x in the denominator with sec^2xsec2x:
(1+sec^2x)/(sec^2x)=1+cos^2x1+sec2xsec2x=1+cos2x

Now we can break the fraction up in two:
1/sec^2x+sec^2x/sec^2x=1+cos^2x1sec2x+sec2xsec2x=1+cos2x

Since 1/secx=cosx1secx=cosx, 1/sec^2x=cos^2x1sec2x=cos2x; and sec^2x/sec^2x=1sec2xsec2x=1. So:
cos^2x+1=1+cos^2xcos2x+1=1+cos2x

Using the commutative property of addition we can rearrange the left side of the equation to match the right:
1+cos^2x=1+cos^2x1+cos2x=1+cos2x