How do you verify the following identity?

(cos(3x))/(cos(x)) = 1-4sin^2(x)cos(3x)cos(x)=14sin2(x)

1 Answer
Jul 4, 2016

Use a few trig identities and a lot of simplifying. See below.

Explanation:

When dealing with things like cos3xcos3x, it helps to simplify it to trigonometric functions of a unit xx; i.e. something like cosxcosx or cos^3xcos3x. We can use the sum rule for cosine to accomplish this:
cos(alpha+beta)=cosalphacosbeta-sinalphasinbetacos(α+β)=cosαcosβsinαsinβ

So, since cos3x=cos(2x+x)cos3x=cos(2x+x), we have:
cos(2x+x)=cos2xcosx-sin2xsinxcos(2x+x)=cos2xcosxsin2xsinx
=(cos^2x-sin^2x)(cosx)-(2sinxcosx)(sinx)=(cos2xsin2x)(cosx)(2sinxcosx)(sinx)

Now we can replace cos3xcos3x with the above expression:
(cos3x)/cosx=1-4sin^2xcos3xcosx=14sin2x
((cos^2x-sin^2x)(cosx)-(2sinxcosx)(sinx))/cosx=1-4sin^2x(cos2xsin2x)(cosx)(2sinxcosx)(sinx)cosx=14sin2x

We can split this larger fraction up into two smaller fractions:
((cos^2x-sin^2x)(cosx))/cosx-((2sinxcosx)(sinx))/cosx=1-4sin^2x(cos2xsin2x)(cosx)cosx(2sinxcosx)(sinx)cosx=14sin2x

Note how the cosines cancel:
((cos^2x-sin^2x)cancel(cosx))/cancel(cosx)-((2sinxcancel(cosx))(sinx))/cancelcosx=1-4sin^2x

->cos^2x-sin^2x-2sin^2x=1-4sin^2x

Now add a sin^2x-sin^2x into the left side of the equation (which is the same thing as adding 0). The reasoning behind this will become clear in a minute:
cos^2x-sin^2x-2sin^2x+(sin^2x-sin^2x)=1-4sin^2x

Rearrange terms:
cos^2x+sin^2x-(sin^2x+sin^2x+2sin^2x)=1-4sin^2x

Use the Pythagorean Identity sin^2x+cos^2x=1 and combine the sin^2xs in the parentheses:
1-(4sin^2x)=1-4sin^2x

You can see that our little trick of adding sin^2x-sin^2x has allowed us to use the Pythagorean Identity and collect the sin^2x terms.

And voila:
1-4sin^2x=1-4sin^2x

Q.E.D.