How do you convert (6, 6)(6,6) into polar form?

1 Answer
Jul 6, 2016

Make use of a few formulas to get (6,6)->(6sqrt(2),pi/4)(6,6)(62,π4).

Explanation:

The desired conversion from (x,y)->(r,theta)(x,y)(r,θ) can be accomplished with the use of the following formulas:
r=sqrt(x^2+y^2)r=x2+y2
theta=tan^(-1) (y/x)θ=tan1(yx)

Using these formulas, we obtain:
r=sqrt((6)^2+(6)^2)=sqrt(72)=6sqrt(2)r=(6)2+(6)2=72=62
theta=tan^(-1)(6/6)=tan^(-1)1=pi/4θ=tan1(66)=tan11=π4

Thus (6,6)(6,6) in rectangular coordinates corresponds to (6sqrt(2),pi/4)(62,π4) in polar coordinates.