#int tan^(5)(x) dx#
Knowing the fact that #tan^(2)(x) = sec^2(x)-1#, we can rewrite it as
#int (sec^2(x)-1)^(2) tan(x) dx#, which yields
#int sec^3(x) sec(x) tan(x) dx-2int sec^2(x) tan(x) dx + int tan(x) dx#
First integral:
Let #u=sec(x) -> du = sec(x)tan(x) dx#
Second integral:
Let #u =sec(x) -> du = sec(x)tan(x) dx#
Therefore
#int u^3 du - 2int u du + int tan(x) dx#
Also note that #int tan(x) dx = ln|sec(x)| + C#, thus giving us
#1/4 u^4 - 1/2 u^2 + ln|sec(x)| + C#
Substituting #u# back into the expression gives us our final result of
#1/4sec^(4)(x)-cancel(2)*(1/cancel(2))sec^(2)(x)+ln|sec(x)|+C#
Thus
#int tan^(5)(x) dx = 1/4sec^(4)(x)-sec^(2)(x)+ln|sec(x)|+C#