What is the integral of int tan^5(x)tan5(x)?

1 Answer
Jul 10, 2016

int tan^(5)(x) dx = 1/4sec^(4)(x)-sec^(2)(x)+ln|sec(x)|+Ctan5(x)dx=14sec4(x)sec2(x)+ln|sec(x)|+C

Explanation:

int tan^(5)(x) dxtan5(x)dx

Knowing the fact that tan^(2)(x) = sec^2(x)-1tan2(x)=sec2(x)1, we can rewrite it as

int (sec^2(x)-1)^(2) tan(x) dx(sec2(x)1)2tan(x)dx, which yields

int sec^3(x) sec(x) tan(x) dx-2int sec^2(x) tan(x) dx + int tan(x) dxsec3(x)sec(x)tan(x)dx2sec2(x)tan(x)dx+tan(x)dx

First integral:
Let u=sec(x) -> du = sec(x)tan(x) dxu=sec(x)du=sec(x)tan(x)dx

Second integral:
Let u =sec(x) -> du = sec(x)tan(x) dxu=sec(x)du=sec(x)tan(x)dx

Therefore

int u^3 du - 2int u du + int tan(x) dxu3du2udu+tan(x)dx

Also note that int tan(x) dx = ln|sec(x)| + Ctan(x)dx=ln|sec(x)|+C, thus giving us

1/4 u^4 - 1/2 u^2 + ln|sec(x)| + C14u412u2+ln|sec(x)|+C

Substituting uu back into the expression gives us our final result of

1/4sec^(4)(x)-cancel(2)*(1/cancel(2))sec^(2)(x)+ln|sec(x)|+C

Thus

int tan^(5)(x) dx = 1/4sec^(4)(x)-sec^(2)(x)+ln|sec(x)|+C