How do you implicitly differentiate y^2/x= x^3 - 3yx^2 ?

1 Answer
Jul 10, 2016

Use the product and quotients rules and do a lot of tedious algebra to get dy/dx=(3x^4+2x^3y+y^2)/(2xy+x^4).

Explanation:

We will begin on the left hand side:
y^2/x

In order to take the derivative of this, we need to use the quotient rule:
d/dx(u/v)=(u'v-uv')/v^2

We have u=y^2->u'=2ydy/dx and v=x->v'=1, so:
d/dx(y^2/x)=((2ydy/dx)(x)-(y^2)(1))/(x)^2
->d/dx(y^2/x)=(2xydy/dx-y^2)/x^2

Now for the right hand side:
x^3-3yx^2

We can use the sum rule and multiplication of a constant rule to break this into:
d/dx(x^3)-3d/dx(yx^2)

The second of these will require the product rule:
d/dx(uv)=u'v+uv'
With u=y->u'=dy/dx and v=x^2->v'=2x. So:
d/dx(x^3-3yx^2)=3x^2-((dy/dx)(x^2)+(y)(2x))
->d/dx(x^3-3yx^2)=3x^2-x^2dy/dx+2xy

Our problem now reads:
(2xydy/dx-y^2)/x^2=3x^2-x^2dy/dx+2xy

We can add x^2dy/dx to both sides and factor out a dy/dx to isolate it:
(2xydy/dx-y^2)/x^2=3x^2-x^2dy/dx+2xy
->(2xydy/dx)/x^2+x^2dy/dx-(y^2)/x^2=3x^2+2xy
->dy/dx((2xy)/x^2+x^2)=3x^2+2xy+(y^2)/x^2
->dy/dx=(3x^2+2xy+(y^2)/x^2)/((2xy)/x^2+x^2)

I hope you like algebra, because this is one nasty equation that needs to be simplified:
dy/dx=(3x^2+2xy+(y^2)/x^2)/((2xy)/x^2+x^2)

->dy/dx=((3x^4)/x^2+(2x^3y)/x^2+(y^2)/x^2)/((2xy)/x^2+x^4/x^2)

->dy/dx=((3x^4+2x^3y+y^2)/x^2)/((2xy+x^4)/x^2)

->dy/dx=(3x^4+2x^3y+y^2)/x^2*x^2/(2xy+x^4)

->dy/dx=(3x^4+2x^3y+y^2)/(2xy+x^4)