How do you determine the limit of (x+4)/(x-4)x+4x−4 as x approaches 4+? Calculus Limits Determining Limits Algebraically 1 Answer Euan S. Jul 11, 2016 lim_(x->4^+) (x+4)/(x-4) = oo Explanation: lim_(x->4^+) (x+4) = 8 therefore 8lim_(x->4^+) 1/(x-4) As lim_(x->4^+) (x-4) = 0 and all points on the approach from the right are greater than zero, we have: lim_(x->4^+) 1/(x-4) = oo implies lim_(x->4^+) (x+4)/(x-4) = oo Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 7967 views around the world You can reuse this answer Creative Commons License