Question #0df97

1 Answer
Jul 17, 2016

The answer to 4 is e^-2.

Explanation:

The problem is:

lim_(x->oo)((2x+2)/(2x+4))^(2x+2)

Now this is a difficult problem. The solution lies in very careful pattern recognition. You may recall the definition of e:

e=lim_(u->oo)(1+1/u)^u~~2.718...

If we could rewrite the limit as something close to the definition of e, we would have our answer. So, let's try it.

Note that lim_(x->oo)((2x+2)/(2x+4))^(2x+2) is equivalent to:

lim_(x->oo)((2x+4-2)/(2x+4))^(2x+2)

We can split up the fractions like so:

lim_(x->oo)((2x+4)/(2x+4)-2/(2x+4))^(2x+2)
=lim_(x->oo)(1-2/(2x+4))^(2x+2)

We're getting there! Let's factor out a -2 from the top and bottom:

lim_(x->oo)(1-2/(2x+4))^(2x+2)
=lim_(x->oo)(1+((-2))/(-2(-x-2)))^(2x+2)
->lim_(x->oo)(1+(cancel(-2))/(cancel(-2)(-x-2)))^(2x+2)
=lim_(x->oo)(1+1/(-x-2))^(2x+2)

Let us apply the substitution u=-x-2->x=-2-u:

lim_(x->oo)(1+1/(-x-2))^(2x+2)

=(1+1/u)^(2(-2-u)+2
=(1+1/u)^(-4-2u+2)
=(1+1/u)^(-2u-2)

The properties of exponents say: x^(a+b)=x^ax^b

So lim_(x->oo)(1+1/u)^(-2u-2) is equivalent to:

lim_(x->oo)(1+1/u)^(-2u)(1+1/u)^(-2)

The properties of exponents also say that: x^(ab)=x^(a^b)

Which means this further reduces to:

lim_(x->oo)(1+1/u)^((u)^(-2))(1+1/u)^(-2)
=lim_(x->oo)(1+1/u)^((u)^(-2))lim_(x->oo)(1+1/u)^(-2)

By definition, lim_(x->oo)(1+1/u)^(u)=e; and using direct substitution on the second limit yields:

lim_(x->oo)(1+1/u)^(-2)

=1/(1+1/oo)^(2)

=1/(1+0)^(2)

=1/1^(2)=1

So the solution is...
lim_(x->oo)(1+1/u)^((u)^(-2))lim_(x->oo)(1+1/u)^(-2)

=(e)^-2(1)

=e^-2