How do you solve #x^2-x= -1# using the quadratic formula?

1 Answer
Jul 26, 2016

#x=(1+-isqrt(3))/2#

Explanation:

The quadratic formula for a general quadratic equation #ax^2+bx+c=0# is given by:

#x=(-b+-sqrt(b^2-4ac))/(2a)#

For the equation:

#x^2 - x = -1#

or #x^2 -x + 1=0#

you get

#a=1; b=-1 and c = 1#

by substituting these values in the quadratic formula:

#x=(-(-1)+-sqrt((-1)^2-4*1*1))/(2*1)#

#x= (1+-sqrt(1-4))/2#

or #x=(1+-sqrt(-3))/2#

or #x=(1+-isqrt(3))/2#