How do you convert 2y=y^2-x^2 -4x 2y=y2x24x into a polar equation?

1 Answer
Jul 31, 2016

r=-((2sin(theta)+4cos(theta))/cos(2theta))r=(2sin(θ)+4cos(θ)cos(2θ))

Explanation:

2y=y^2-x^2-4x2y=y2x24x

x=rcos(theta)x=rcos(θ)
y=rsin(theta)y=rsin(θ)

Plug these values in the given equation

2rsin(theta)=r^2sin^2(theta)-r^2cos^2(theta)-4rcos(theta)2rsin(θ)=r2sin2(θ)r2cos2(θ)4rcos(θ)

2rsin(theta)+4rcos(theta)=-r^2(cos^2(theta)-sin^2(theta))2rsin(θ)+4rcos(θ)=r2(cos2(θ)sin2(θ))

r(2sin(theta)+4cos(theta))=-r^2 (cos(2theta))r(2sin(θ)+4cos(θ))=r2(cos(2θ))

Used the identity cos(2theta)=cos^2(theta)-sin^2(theta)cos(2θ)=cos2(θ)sin2(θ)

r=-((2sin(theta)+4cos(theta))/cos(2theta))r=(2sin(θ)+4cos(θ)cos(2θ))