How do you use the chain rule to differentiate y=sin^3(2x+1)y=sin3(2x+1)? Calculus Basic Differentiation Rules Chain Rule 1 Answer Euan S. Aug 8, 2016 (dy)/(dx) = 6sin^2(2x+1)cos(2x+1)dydx=6sin2(2x+1)cos(2x+1) Explanation: u(x) = 2x+1 u(x)=2x+1 so (du)/(dx) = 2dudx=2 y = sin^3(u) implies (dy)/(du) = 3sin^2(u)cos(u)y=sin3(u)⇒dydu=3sin2(u)cos(u) (dy)/(dx) = (dy)/(du)(du)/(dx)dydx=dydududx (dy)/(dx) = 6sin^2(2x+1)cos(2x+1)dydx=6sin2(2x+1)cos(2x+1) Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of y= 6cos(x^2)y=6cos(x2) ? How do you find the derivative of y=6 cos(x^3+3)y=6cos(x3+3) ? How do you find the derivative of y=e^(x^2)y=ex2 ? How do you find the derivative of y=ln(sin(x))y=ln(sin(x)) ? How do you find the derivative of y=ln(e^x+3)y=ln(ex+3) ? How do you find the derivative of y=tan(5x)y=tan(5x) ? How do you find the derivative of y= (4x-x^2)^10y=(4x−x2)10 ? How do you find the derivative of y= (x^2+3x+5)^(1/4)y=(x2+3x+5)14 ? How do you find the derivative of y= ((1+x)/(1-x))^3y=(1+x1−x)3 ? See all questions in Chain Rule Impact of this question 9806 views around the world You can reuse this answer Creative Commons License