How do you use the chain rule to differentiate y=sin^3(2x+1)y=sin3(2x+1)?

1 Answer
Aug 8, 2016

(dy)/(dx) = 6sin^2(2x+1)cos(2x+1)dydx=6sin2(2x+1)cos(2x+1)

Explanation:

u(x) = 2x+1 u(x)=2x+1 so (du)/(dx) = 2dudx=2

y = sin^3(u) implies (dy)/(du) = 3sin^2(u)cos(u)y=sin3(u)dydu=3sin2(u)cos(u)

(dy)/(dx) = (dy)/(du)(du)/(dx)dydx=dydududx

(dy)/(dx) = 6sin^2(2x+1)cos(2x+1)dydx=6sin2(2x+1)cos(2x+1)