What is the integral of cos(theta)^2cos(θ)2? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Euan S. Aug 13, 2016 =1/2[phi + 1/2sin2phi] + C=12[ϕ+12sin2ϕ]+C Explanation: Use double angle formula cos2phi = 2cos^2phi - 1cos2ϕ=2cos2ϕ−1 therefore cos^2phi = 1/2(1+cos2phi) int cos^2phi dphi = 1/2 int (1+cos2phi) dphi =1/2[phi + 1/2sin2phi] + C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 8946 views around the world You can reuse this answer Creative Commons License