First, recall what cos(x+y)cos(x+y) is:
cos(x+y)=cosxcosy+sinxsinycos(x+y)=cosxcosy+sinxsiny
Note that:
(sinx+siny)^2=a^2(sinx+siny)2=a2
->sin^2x+2sinxsiny+sin^2y=a^2→sin2x+2sinxsiny+sin2y=a2
And:
(cosx+cosy)^2=b^2(cosx+cosy)2=b2
->cos^2x+2cosxcosy+cos^2y=b^2→cos2x+2cosxcosy+cos2y=b2
Now we have these two equations:
sin^2x+2sinxsiny+sin^2y=a^2sin2x+2sinxsiny+sin2y=a2
cos^2x+2cosxcosy+cos^2y=b^2cos2x+2cosxcosy+cos2y=b2
If we add them together, we have:
sin^2x+2sinxsiny+sin^2y+cos^2x+2cosxcosy+cos^2y=a^2+b^2sin2x+2sinxsiny+sin2y+cos2x+2cosxcosy+cos2y=a2+b2
Don't let the size of this equation throw you off. Look for identities and simplifications:
(sin^2x+cos^2x)+(2sinxsiny+2cosxcosy)+(cos^2y+sin^2y)=a^2+b^2(sin2x+cos2x)+(2sinxsiny+2cosxcosy)+(cos2y+sin2y)=a2+b2
Since sin^2x+cos^2x=1sin2x+cos2x=1 (Pythagorean Identity) and cos^2y+sin^2y=1cos2y+sin2y=1 (Pythagorean Identity), we can simplify the equation to:
1+(2sinxsiny+2cosxcosy)+1=a^2+b^21+(2sinxsiny+2cosxcosy)+1=a2+b2
->(2sinxsiny+2cosxcosy)+2=a^2+b^2→(2sinxsiny+2cosxcosy)+2=a2+b2
We can factor out a 22 twice:
2(sinxsiny+cosxcosy)+2=a^2+b^22(sinxsiny+cosxcosy)+2=a2+b2
->2((sinxsiny+cosxcosy)+1)=a^2+b^2→2((sinxsiny+cosxcosy)+1)=a2+b2
And divide:
(sinxsiny+cosxcosy)+1=(a^2+b^2)/2(sinxsiny+cosxcosy)+1=a2+b22
And subtract:
sinxsiny+cosxcosy=(a^2+b^2)/2-1sinxsiny+cosxcosy=a2+b22−1
Finally, since cos(x+y)=cosxcosy+sinxsinycos(x+y)=cosxcosy+sinxsiny, we have:
cos(x+y)=(a^2+b^2)/2-1cos(x+y)=a2+b22−1