How do you simplify sin(alpha+beta)+sin(alpha-beta)?

1 Answer
Sep 2, 2016

sin(alpha+beta)+sin(alpha-beta)=2*sin(alpha)cos(beta)

Explanation:

We use the general property
sin(a+b)=sin(a)cos(b)+sin(b)cos(a)

So, simplifying the above expression using the property, we get;
sin(alpha+beta)+sin(alpha-beta)=sin(alpha)cos(beta)+color(red)(sin(beta)cos(alpha)) + sin(alpha)cos(beta)-color(red)(sin(beta)cos(alpha))
:. sin(alpha+beta)+sin(alpha-beta)=2*sin(alpha)cos(beta)
as the two terms in red get cancelled