How do you solve 2tan^2x=3tanx+7 in the interval [0,360]?

1 Answer

Solution is {70.12^o,128.31^o,231.69^o,250.12^o}

Explanation:

2tan^2x=3tanx+7 can be written as

2tan^2x-3tanx-7=0

Using quadratic formula

tanx=(-(-3)+-sqrt((-3)^2-4xx2xx(-7)))/(2xx2)

= (3+-sqrt(9+56))/4

= (3+-sqrt65)/4=(3+-8.06225)/4

i.e. tanx=11.06225/4=2.76556 or tanx=-5.06226/4=-1.26556

and using tables x=tan^(-1)2.76556=70.12^o

or x=(180+70.12)^o=250.12^o

as function tan has a cycle of pi=180^o

or x=tan^(-1)(-1.26556)=(180-51.69)^o=128.31^o or x=(180+51.69)^o=231.69^o

Hence Solution is {70.12^o,128.31^o,231.69^o,250.12^o}