How do you simplify #\sqrt{98x^{4} y^{6} z^{2}}#?

2 Answers
Oct 2, 2016

#7 sqrt(2) x^(2) y^(3) z#

Explanation:

We have: #sqrt(98 x^(4) y^(6) z^(2))#

Let's express #98# as a product:

#= sqrt((14 cdot 7) x^(4) y^(6) z^(2))#

#= sqrt((2 cdot 7 cdot 7) x^(4) y^(6) z^(2))#

#= sqrt(2 cdot 7^(2) x^(4) y^(6) z^(2))#

#= sqrt(2) cdot 7 cdot x^(2) cdot y^(3) cdot z#

#= 7 sqrt(2) x^(2) y^(3) z#

Oct 31, 2016

Answer is #sqrt(98x^4y^6z^2##=##7sqrt(2)x^2y^3z#.

Explanation:

#sqrt(98x^4y^6z^2# #=sqrt(49*2*(x^2)^2*y^2*(y^2)^2*z^2# #=7sqrt(2)x^2y^3z#. (answer).