How do you find the derivative of (4x+1)^2(1-x)^3?

2 Answers
Oct 5, 2016

Use product and chain rule

Explanation:

f'(x)=u'v+v'u
Let u=(4x+1)^2, v=(1-x)^3
u'=8(4x+1), v'=-3(1-x)^2
f'(x)=8(4x+1)(1-x)^3-3(1-x)^2(4x+1)^2
=(4x+1)(1-x)^2(8(1-x)-3(4x+1))
=(4x+1)(1-x)^2(5-20x)

Oct 5, 2016

f'(x)=-3(4x+1)^2(1-x)^2+8(4x+1)(1-x)^3

Explanation:

You have to use a combination of the Product Rule and Chain Rule .

f'(x)=uv'+u'v

u=(4x+1)^2
u'=2(4x+1)*4 => APPLY Chain Rule

v=(1-x)^3
v'=3(1-x)^2*-1 => APPLY Chain Rule

f'(x)=(4x+1)^2 3(1-x)^2*-1+2(4x+1)*4(1-x)^3

f'(x)=-3(4x+1)^2(1-x)^2+8(4x+1)(1-x)^3