What is the limit of ((1 + 3 x) / (2 + 4 x^2 + 2 x^4))^3 as x approaches 1?

1 Answer
Oct 5, 2016

y=1/8

Explanation:

To make the computes easier we can rewrite the expression like

f(x)=((1+3x)/(2+4x^2+2x^4))^3=((1+3x)/(2*(1+2x^2+x^4)))^3=1/2^3((1+3x)/(x^4+2x^2+1))^3=1/8((1+3x)/((x^2+1)^2))^3

You have to find

lim_(x->1)f(x)=lim_(x->1)1/8((1+3x)/((x^2+1)^2))^3=1/8lim_(x->1)((1+3x)/((x^2+1)^2))^3

Since f(x) is continuos in x=1 , because (x^2+1)^2!=0 AAx

to evaluate the limit you could simply substitute x=1

lim_(x->1)f(x)=1/8((1+3(1))/(((1)^2+1)^2))^3=1/8((1+3)/(1+1)^2)^3=
=1/8(cancel(4)/cancel(4))^3=1/8*1=1/8

graph{((1+3x)/(2+4x^2+2x^4))^3 [0.9017, 1.1578, 0.0647, 0.1928]}