How do you convert the polar equation r=3sinthetar=3sinθ into rectangular form?

1 Answer
Oct 5, 2016

x^2+(y-3/2)^2=9/4x2+(y32)2=94

Explanation:

x=rcos(theta)x=rcos(θ)
y=rsin(theta)y=rsin(θ)
r^2=x^2+y^2r2=x2+y2

Multiply the equation by rr

r*r=3rsin(theta)rr=3rsin(θ)

Simplify

r^2=3rsin(theta)r2=3rsin(θ)

Make appropriate substitutions

x^2+y^2=3yx2+y2=3y

Gather all of the terms to the same side

x^2+y^2-3y=0x2+y23y=0

Complete square using the coefficient of yy variable

(-3/2)^2=9/4(32)2=94

Add 9/494 to both sides the equation to keep it balanced. The constant 9/494 allows you make a perfect square trinomial.

x^2+y^2-3y+9/4=9/4x2+y23y+94=94

Rewrite

x^2+(y-3/2)^2=9/4x2+(y32)2=94

Check out a tutorial on converting an equation from polar to rectangular

Check out a tutorial on completing the square graphically

Check out a tutorial on completing the square analytically